Targeting the glyoxalase pathway enhances TRAIL efficacy in cancer cells by downregulating the expression of antiapoptotic molecules.

نویسندگان

  • Hiroya Taniguchi
  • Mano Horinaka
  • Tatsushi Yoshida
  • Kimihiro Yano
  • Ahmed E Goda
  • Shusuke Yasuda
  • Miki Wakada
  • Toshiyuki Sakai
چکیده

Methylglyoxal is an essential component in glycolysis and is known to be an inducer of apoptosis. Glyoxalase I (GLO1) metabolizes and inactivates methylglyoxal. GLO1 is known to be overexpressed in cancer cells and causes resistance to anticancer agents. We show for the first time that methylglyoxal treatment or the silencing of GLO1 enhances sensitivity to the promising anticancer agent TRAIL in malignant tumor cells. Methylglyoxal suppressed the expression of antiapoptotic factors, X-linked inhibitor of apoptosis protein (XIAP), survivin, cIAP1, Bcl-2, and Bcl-xL, without affecting TRAIL receptors, DR4 and DR5. Knockdown of XIAP or survivin by siRNA also enhanced TRAIL-induced apoptosis, indicating that downregulation of XIAP and survivin expression by methylglyoxal contributes to the enhancement of TRAIL activity. Furthermore, methylglyoxal decreased NF-κB activity with or without TRAIL treatment. On the other hand, the knockdown of GLO1 by siRNA enhanced TRAIL-induced apoptosis via the downregulation of XIAP and survivin expression. In conclusion, our results strongly suggest that sensitivity to TRAIL is increased by inhibition of the glyoxalase pathway and that the combination of TRAIL with methylglyoxal or glyoxalase inhibitors may be useful for a novel combination chemotherapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Medicine in Practice Targeting the Glyoxalase Pathway Enhances TRAIL Efficacy in Cancer Cells by Downregulating the Expression of Antiapoptotic Molecules

Methylglyoxal is an essential component in glycolysis and is known tobe an inducer of apoptosis.Glyoxalase I (GLO1) metabolizes and inactivates methylglyoxal. GLO1 is known to be overexpressed in cancer cells and causes resistance to anticancer agents.We show for the first time that methylglyoxal treatment or the silencing ofGLO1enhances sensitivity to thepromising anticancer agentTRAIL inmalig...

متن کامل

Naringenin Enhances the Anti-Cancer Effect of Cyclophosphamide against MDA-MB-231 Breast Cancer Cells Via Targeting the STAT3 Signaling Pathway

Naringenin is a natural compound with potential anti-cancer effects against several cancer types.  Also, its precise molecular mechanisms regarding tumor growth suppression has not been completely elucidated. In the current study the apoptosis-inducing and anti-proliferative effects of Naringenin together with cyclophosphamide were studied in breast cancer cells and the participation of JAK2/ST...

متن کامل

Naringenin Enhances the Anti-Cancer Effect of Cyclophosphamide against MDA-MB-231 Breast Cancer Cells Via Targeting the STAT3 Signaling Pathway

Naringenin is a natural compound with potential anti-cancer effects against several cancer types.  Also, its precise molecular mechanisms regarding tumor growth suppression has not been completely elucidated. In the current study the apoptosis-inducing and anti-proliferative effects of Naringenin together with cyclophosphamide were studied in breast cancer cells and the participation of JAK2/ST...

متن کامل

Increased Expression of TRAIL and Its Receptors on Peripheral T-Cells in Type 1 Diabetic Patients

Background: Type-I diabetes is an autoimmune inflammatory disease in which pancreatic ß-cells are selectively destroyed by infiltrating cells. TNF-related apoptosis-inducing ligand (TRAIL) is a type-II membrane protein of the TNF superfamily which is expressed in different tissues, including pancreas and lymphocytes. In humans, TRAIL interacts with four membrane receptors. TRAIL-R1 and TRAIL-R2...

متن کامل

MiR-490-5p Functions as an OncomiR in Breast Cancer by Targeting NFATc4

Breast cancer is a serious health problem worldwide in women. MicroRNAs are small non-coding RNAs of 18–25 nucleotides in length that post-transcriptionally modulate gene expression. MiR-490 has been reported as a tumor suppressor and oncomiR microRNA in breast cancer with two separate targets, NFAT and Rho. NFAT is one of the targets for miR-490 but the relationship between hsa</e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 11 10  شماره 

صفحات  -

تاریخ انتشار 2012